Dispensing Propane Safely
Filling Cylinders by Weight \& Volume

Filling Portable Cylinders

Filling Cylinders

Method determined at the local level
Federal + NFPA 58:

Less than 200 lb . water capacity, transported in commerce = WEIGHT
200 lb . or more water capacity = VOLUME
Less than 200 lb . water capacity, used at fill site = VOLUME

Filling by Weight

Filling by Weight

Filling by Weight

Qualify

Prepare

Fill

- Confirm cylinder is in good physical shape.
- Confirm
qualification date.

Filling by Weight

Qualify

Prepare

Fill

- Clear Scale.
- Calculate fill weight.
- Set scale.
- Select adapter if required.
- Attach adapter to cylinder
- Connect hose.
- Set meter register to 0 if applicable.

Cylinder Filled Weight

To determine the total filled weight of a cylinder, you will need to identify the water capacity and tare weight of the cylinder being filled.

Cylinder Filled Weight

Cylinder Filled Weight

This is the "Tare Weight" 47.6 LB

$$
T W-16.6 L B
$$

Propane Capacity

Propane Capacity (lb.) = Water Capacity (lb.) x . 42

Exercise 1

Water Capacity: 23.9 lbs .
Constant: 0.42

$$
23.9 \times 0.42
$$

Propane Capacity: 10.0 lbs .

Exercise 2

Water Capacity: 95.3 lbs .
Constant: 0.42

$$
95.3 \times 0.42
$$

Propane Capacity: $\quad 40.0 \mathrm{lbs}$.

Exercise 3

Water Capacity: 72.4 lbs .
Constant: 0.42

$$
72.4 \times 0.42
$$

Propane Capacity: $\quad 30.4 \mathrm{lbs}$.

Total Filled Weight

Total Filled Weight = Propane Capacity + Tare Weight

Water Capacity: 80 lbs . Tare Weight: 34.5 lbs .
Propane Capacity $=80 \times 0.42=33.6$
Total Filled Weight $=33.6+34.5=68.1$

Exercise 4

Water Capacity: $12 \mathrm{lbs} \quad$ Tare Weight: 11 lbs.
Constant: 0.42

$$
\text { Propane Capacity }=12 \times 0.42=5.0
$$

Total Filled Weight $=5.0+11$

Total Filled Weight $=16$

Exercise 5

Water Capacity: 238 Ibs.
Tare Weight: 69.4 lbs.
Constant: 0.42

$$
\text { Propane Capacity }=238 \times 0.42=100.0
$$

Total Filled Weight $=100.0+69.4$

Total Filled Weight $=169.4$

Exercise 6

Water Capacity: $103 \mathrm{lbs} . \quad$ Tare Weight: 33.9 lbs.
Constant: 0.42
Propane Capacity $=103 \times 0.42=43.3$

Total Filled Weight $=43.3+33.9$

Total Filled Weight $=77.2$

Scale Set Point

Scale Set Point

Propane + Tare Weight + Hose \& Fitting Weight

80 lbs . WC $\quad 34.5 \mathrm{lbs}$. TW $\quad 4.5 \mathrm{lbs}$. HW
Propane Capacity: $80 \mathrm{lb} . \mathrm{WC}$ *. $42=33.6$
33.6 + TW $34.5 \mathrm{lbs} .+$ HW 4.5 lbs .
Scale Set Point $=72.6$

Round Down
Scale Set Point $=72$

Exercise 7

Water Capacity: 71.4 lbs . Tare Weight: 25 lbs . Hose Weight: 4.5 lbs .

$$
\text { Propane Capacity }=71.4 \times 0.42=30.0
$$

Total Filled Weight $=30.0+25=55$

$$
\begin{gathered}
\text { Scale Set Point }=55+4.5 \\
=59.5
\end{gathered}
$$

Scale Set Point = 59

Fill

Qualify

Prepare

Fill

Shutdown

- Turn on pump.
- Open hose end valve if needed.
- Watch scale.

Shutdown

- Scale tips:
immediately close the hose end valve.
- Turn off pump.
- Close service valve.
- Disconnect hose.

- Store hose.

- Disconnect adapter (if applicable).

Filling by Volume

Qualify

- Confirm cylinder is in good physical shape.
- Confirm qualification date.

Fill

- Verify the Fixed

Maximum Liquid Level
Gauge (FMLLG) is
operational.

- Select adapter if required.
- Attach adapter to cylinder.
- Connect hose.
- Set meter register to 0 if applicable.

Fixed Maximum Liquid Level Gauge

 (FMLLG)

Filling by Volume

Qualify

- Confirm cylinder is in good physical shape.
- Confirm qualification date.

Shutdown

- Verify the Fixed Maximum Liquid Level Gauge (FMLLG) is operational.
- Select adapter if required.
- Attach adapter to cylinder.

Prepare

- Connect hose.
- Set meter register to 0 if applicable.
- Turn on pump.
- Open service valve if needed.
- Open FMLLG - If liquid appears, the cylinder is full.
- Open hose end valve.
- Watch FMLLG.

Filling by Volume

Qualify

- Confirm cylinder is in good physical shape.
- Confirm qualification date.

Fill

- Turn on pump.
- Open service valve if needed.
- Open FMLLG - If liquid appears, the cylinder is full.
- Open hose end valve
- Watch FMLLG.
- Liquid (white mist) escapes - immediately close the hose end valve.
- Turn off pump.
- Close service valve.
- Disconnect hose.
- Store hose.
- Disconnect adapter (if applicable).

Review: Take the Quiz

Multiple Choice

What is the first step in filling a cylinder by weight?
\square Inspect the cylinder.
\square Set the register to 0 .
\square Identify the needed adapters.
\square Calculate the scale set point.

Multiple Choice

What is the first step in filling a cylinder by weight?
∇ Inspect the cylinder.
\square Set the register to 0 .
\square Identify the needed adapters.Calculate the scale set point.

Multiple Choice

Whether you can fill by weight or volume is determined by:
\square Federal Regulations.
regulations at the local level.

- NFPA 58.
\square the availability of trained staff.

Multiple Choice

Whether you can fill by weight or volume is determined by:
\square Federal Regulations.
∇ regulations at the local level.NFPA 58.the availability of trained staff.

Multiple Choice

What is the first step in filling a cylinder by volume?
\square Inspect the cylinder.
\square Set the register to 0 .
\square Identify needed adapters.
\square Confirm that the FMLLG is operating properly.

Multiple Choice

What is the first step in filling a cylinder by volume?
∇ Inspect the cylinder.
\square Set the register to 0 .
\square Identify needed adapters.
\square Confirm that the FMLLG is operating properly.

Multiple Choice

When filling by the volume you can confirm that the FMLLG is working by opening it and \qquad .
\square see liquid coming out.
\square listening for a hissing sound.

Multiple Choice

When filling by the volume you can confirm that the FMLLG is working by opening it and \qquad .
\square see liquid coming out.
∇ listening for a hissing sound.

True/False

When filling by volume the meter register is used to determine when the cylinder is full of liquid propane.
\square True
\square False

True/False

When filling by volume the meter register is used to determine when the cylinder is full of liquid propane.
\square True
च False

Multiple Choice

To calculate the propane capacity:

Add water capacity plus the tare weight, then multiply by 42
Add the tare weight to the water capacity
Multiply the water capacity

Multiple Choice

To calculate the propane capacity:
\square Add water capacity plus the tare weight then multiply by .42
\square Add the tare weight to the water capacity
∇ Multiply the water capacity

True/False

The fixed maximum liquid level gauge is used to determine that the cylinder is full when filling by volume.

True
\square False

True/False

The fixed multiple liquid level gauge is used to determine that the cylinder is full when filling by volume.

V True
\square False

Multiple Choice

Calculate the scale set point of a 20 lb . Cylinder
Water capacity: $47.6 \mathrm{lb} . \quad$ Tare Weight: 16.6 lb. Hose Weight: 4 lb.

- 40 lb .

041 lb .
$\square 58 \mathrm{lb}$.
$\square 59 \mathrm{lb}$.

Multiple Choice

Calculate the scale set point of a 20 lb . Cylinder
Water capacity: 47.6 lb Tare Weight: $16.6 \mathrm{LB} \quad$ Hose Weight: 4 LB
『 40 lb .41 lb.58 lb .59 lb .

